Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 477
Filtrar
1.
Toxicol Mech Methods ; 34(2): 130-147, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37771097

RESUMO

An increased risk of new-onset diabetes mellitus has been recently reported for statin therapy, and experimental studies have shown reduced glucose-stimulated insulin secretion (GSIS) and mitochondrial dysfunction in beta cells with effects differing among agents. Organic anion transporting polypeptide (OATP) 2B1 contributes to hepatic uptake of rosuvastatin, atorvastatin and pravastatin, three known substrates. Since OATP2B1 is present in beta cells of the human pancreas, we investigated if OATP2B1 facilitates the local accumulation of statins in a rat beta cell model INS-1 832/13 (INS-1) thereby amplifying statin-induced toxicity. OATP2B1 overexpression in INS-1 cells via adenoviral transduction showed 2.5-, 1.8- and 1.4-fold higher cellular retention of rosuvastatin, atorvastatin and pravastatin, respectively, relative to LacZ control, while absolute intracellular concentration was about twice as high for the lipophilic atorvastatin compared to the more hydrophilic rosuvastatin and pravastatin. After 24 h statin treatment at high concentrations, OATP2B1 enhanced statin toxicity involving activation of intrinsic apoptosis (caspase 3/7 activation) and mitochondrial dysfunction (NADH dehydrogenase activity) following rosuvastatin and atorvastatin, which was partly reversed by isoprenoids. OATP2B1 had no effect on statin-induced reduction in GSIS, mitochondrial electron transport chain complex expression or caspase 9 activation. We confirmed a dose-dependent reduction in insulin secretion by rosuvastatin and atorvastatin in native INS-1 with a modest change in cellular ATP. Collectively, our results indicate a role of OATP2B1, which is abundant in human beta cells, in statin accumulation and statin-induced toxicity but not insulin secretion of rosuvastatin and atorvastatin in INS-1 cells.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Doenças Mitocondriais , Humanos , Ratos , Animais , Inibidores de Hidroximetilglutaril-CoA Redutases/toxicidade , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Atorvastatina/toxicidade , Rosuvastatina Cálcica/toxicidade , Pravastatina , Doenças Mitocondriais/induzido quimicamente
2.
J Ovarian Res ; 16(1): 218, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37986175

RESUMO

High-grade serous carcinoma (HGSC) is the most common and aggressive subtype of epithelial ovarian cancer, characterized by gain-of-function TP53 mutations originating in the fallopian tube epithelium. Therapeutic intervention occurs at advanced metastatic disease, due to challenges in early-stage diagnosis, with common disease recurrence and therapy resistance despite initial therapy success. The mevalonate pathway is exploited by many cancers and is potently inhibited by statin drugs. Statins have shown anti-cancer activity in many, but not all cancers. Here, we investigated the role of p53 status in relation to mevalonate pathway signaling in murine oviductal epithelial (OVE) cells and identified OVE cell sensitivity to statin inhibition. We found that p53R175H mutant and Trp53 knockout OVE cells have increased mevalonate pathway signaling compared to p53 wild-type OVE cells. Through orthotopic implantation to replicate the fallopian tube origin of HGSC, p53R175H mutant cells upregulated the mevalonate pathway to drive progression to advanced-stage ovarian cancer, and simvastatin treatment abrogated this effect. Additionally, simvastatin was more efficacious at inhibiting cell metabolic activity in OVE cells than atorvastatin, rosuvastatin and pravastatin. In vitro, simvastatin demonstrated potent effects on cell proliferation, apoptosis, invasion and migration in OVE cells regardless of p53 status. In vivo, simvastatin induced ovarian cancer disease regression through decreased primary ovarian tumor weight and increased apoptosis. Simvastatin also significantly increased cytoplasmic localization of HMG-CoA reductase in ovarian tumors. Downstream of the mevalonate pathway, simvastatin had no effect on YAP or small GTPase activity. This study suggests that simvastatin can induce anti-tumor effects and could be an important inhibitor of ovarian cancer progression.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Neoplasias Ovarianas , Feminino , Camundongos , Animais , Humanos , Tubas Uterinas/metabolismo , Sinvastatina/farmacologia , Sinvastatina/metabolismo , Sinvastatina/uso terapêutico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Ácido Mevalônico/metabolismo , Ácido Mevalônico/uso terapêutico , Células Epiteliais/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Carcinoma Epitelial do Ovário/patologia
3.
Biotechnol J ; 18(12): e2300229, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37563745

RESUMO

Statins are lipid-lowering drugs that selectively inhibit 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, effectively reducing cholesterol synthesis. With improved nutritional conditions, the demand for statins is increasing in the global market. The use of microbial cell factories for statin biosynthesis has become advantageous due to the rapid advancements in biotechnology. These approaches offer simple operation and easy separation of products. This review provides an overview the strategies for statins production via microbial cell factories, including both traditional fermentation culture (non-genetic) and modern synthetic biology manufacture (genetic). Firstly, the complex fermentation parameters and process control technology on submerged fermentation (SmF) and solid-state fermentation (SSF) are introduced in detail. The potential use of recoverable agricultural wastes/(biomass) as a fermentation substrate in SSF for statin production is emphasized. Additionally, metabolic engineering strategies for constructing robust engineering strains and directed evolution are also discussed. The review highlights the potential and challenges of using microbial cell factories for statin production, and aims to promote greener production modes for statins.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Biotecnologia , Fermentação , Engenharia Metabólica
4.
J Immunol ; 211(4): 527-538, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37449905

RESUMO

IgE-mediated mast cell activation is a driving force in allergic disease in need of novel interventions. Statins, long used to lower serum cholesterol, have been shown in multiple large-cohort studies to reduce asthma severity. We previously found that statins inhibit IgE-induced mast cell function, but these effects varied widely among mouse strains and human donors, likely due to the upregulation of the statin target, 3-hydroxy-3-methylgutaryl-CoA reductase. Statin inhibition of mast cell function appeared to be mediated not by cholesterol reduction but by suppressing protein isoprenylation events that use cholesterol pathway intermediates. Therefore, we sought to circumvent statin resistance by targeting isoprenylation. Using genetic depletion of the isoprenylation enzymes farnesyltransferase and geranylgeranyl transferase 1 or their substrate K-Ras, we show a significant reduction in FcεRI-mediated degranulation and cytokine production. Furthermore, similar effects were observed with pharmacological inhibition with the dual farnesyltransferase and geranylgeranyl transferase 1 inhibitor FGTI-2734. Our data indicate that both transferases must be inhibited to reduce mast cell function and that K-Ras is a critical isoprenylation target. Importantly, FGTI-2734 was effective in vivo, suppressing mast cell-dependent anaphylaxis, allergic pulmonary inflammation, and airway hyperresponsiveness. Collectively, these findings suggest that K-Ras is among the isoprenylation substrates critical for FcεRI-induced mast cell function and reveal isoprenylation as a new means of targeting allergic disease.


Assuntos
Anafilaxia , Inibidores de Hidroximetilglutaril-CoA Redutases , Camundongos , Humanos , Animais , Receptores de IgE/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Farnesiltranstransferase/metabolismo , Mastócitos/metabolismo , Anafilaxia/metabolismo , Transdução de Sinais , Degranulação Celular , Imunoglobulina E/metabolismo , Inflamação/metabolismo , Colesterol/metabolismo , Prenilação
5.
Drug Metab Dispos ; 51(10): 1381-1390, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429727

RESUMO

Inclusion of plasma (or plasma proteins) in human hepatocyte uptake studies narrows, but does not close, the gap in in vitro to in vivo extrapolation (IVIVE) of organic anion transporting polypeptide (OATP)-mediated hepatic clearance (CLh) of statins. We have previously shown that this "apparent" protein-mediated uptake effect (PMUE) of statins by OATP1B1-expressing cells, in the presence of 5% human serum albumin (HSA), is mostly an artifact caused by residual statin-HSA complex remaining in the uptake assay. We determined if the same was true with plated human hepatocytes (PHH) and if this artifact can be reduced using suspended human hepatocytes (SHH) and the oil-spin method. We quantified the uptake of a cocktail of five statins by PHH and SHH in the absence and presence of 5% HSA. After terminating the uptake assay, the amount of residual HSA was quantified by quantitative targeted proteomics. For both PHH and SHH, except for atorvastatin and cerivastatin, the increase in total, active, and passive uptake of the statins, in the presence of 5% HSA, was explained by the estimated residual stain-HSA complex. In addition, the increase in active statin uptake by SHH, where present, was marginal (<50%), much smaller than that observed with PHH. Such a marginal increase cannot bridge the gap in IVIVE of CLh of statins. These data disprove the prevailing hypotheses for the in vitro PMUE. A true PMUE should be evaluated using the uptake data corrected for the residual drug-protein complex. SIGNIFICANCE STATEMENT: We show that the apparent protein-mediated uptake (PMUE) of statins by human hepatocytes is largely confounded by residual statin when plated or suspended human hepatocytes are used. Therefore, mechanisms other than PMUE need to be explored to explain the underprediction of the in vivo human hepatic clearance of statins by human hepatocyte uptake assays.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Transportadores de Ânions Orgânicos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Transporte Biológico , Transportadores de Ânions Orgânicos/metabolismo , Albumina Sérica Humana/metabolismo
6.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298172

RESUMO

Statins have been shown to cause diverse male reproductive function impairment, and in some cases, orchialgia. Therefore, the current study investigated the possible mechanisms through which statins may alter male reproductive parameters. Thirty adult male Wistar rats (200-250 g) were divided into three groups. The animals were orally administered rosuvastatin (50 mg/kg), simvastatin (50 mg/kg), or 0.5% carboxy methyl cellulose (control), for a 30-day period. Spermatozoa were retrieved from the caudal epididymis for sperm analysis. The testis was used for all biochemical assays and immunofluorescent localization of biomarkers of interest. Rosuvastatin-treated animals presented with a significant decrease in sperm concentration when compared to both the control and simvastatin groups (p < 0.005). While no significant difference was observed between the simvastatin and the control group. The Sertoli cells, Leydig cells and whole testicular tissue homogenate expressed transcripts of solute carrier organic anion transporters (SLCO1B1 and SLCO1B3). There was a significant decrease in the testicular protein expression of the luteinizing hormone receptor, follicle stimulating hormone receptor, and transient receptor potential vanilloid 1 in the rosuvastatin and simvastatin-treated animals compared to the control. The expression of SLCO1B1, SLCO1B2, and SLCO1B3 in the different spermatogenic cells portray that un-bio transformed statin can be transported into the testicular microenvironment, which can subsequently alter the regulation of the gonadal hormone receptors, dysregulate pain-inflammatory biomarkers, and consequently impair sperm concentration.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Ratos , Animais , Masculino , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Rosuvastatina Cálcica/farmacologia , Ratos Wistar , Sêmen , Testículo/metabolismo , Espermatozoides/metabolismo , Hormônio Foliculoestimulante/metabolismo , Sinvastatina/farmacologia , Sinvastatina/metabolismo , Hormônios Gonadais/metabolismo , Testosterona/metabolismo
7.
J Biol Chem ; 299(5): 104681, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37030504

RESUMO

We report a novel small-molecule screening approach that combines data augmentation and machine learning to identify Food and Drug Administration (FDA)-approved drugs interacting with the calcium pump (Sarcoplasmic reticulum Ca2+-ATPase, SERCA) from skeletal (SERCA1a) and cardiac (SERCA2a) muscle. This approach uses information about small-molecule effectors to map and probe the chemical space of pharmacological targets, thus allowing to screen with high precision large databases of small molecules, including approved and investigational drugs. We chose SERCA because it plays a major role in the excitation-contraction-relaxation cycle in muscle and it represents a major target in both skeletal and cardiac muscle. The machine learning model predicted that SERCA1a and SERCA2a are pharmacological targets for seven statins, a group of FDA-approved 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors used in the clinic as lipid-lowering medications. We validated the machine learning predictions by using in vitro ATPase assays to show that several FDA-approved statins are partial inhibitors of SERCA1a and SERCA2a. Complementary atomistic simulations predict that these drugs bind to two different allosteric sites of the pump. Our findings suggest that SERCA-mediated Ca2+ transport may be targeted by some statins (e.g., atorvastatin), thus providing a molecular pathway to explain statin-associated toxicity reported in the literature. These studies show the applicability of data augmentation and machine learning-based screening as a general platform for the identification of off-target interactions and the applicability of this approach extends to drug discovery.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Miocárdio/enzimologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , Aprendizado de Máquina
8.
Biotechnol Bioeng ; 120(9): 2685-2699, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37060550

RESUMO

Extracellular vesicles (EVs) are a new therapeutic modality with the promise to treat many diseases through their ability to deliver diverse molecular cargo. As with other emerging modalities transitioning into the industrialization phase, all aspects of the manufacturing process are rich with opportunities to enhance the ability to deliver these medicines to patients. With the goal of improving cell culture EV productivity, we have utilized high throughput siRNA screens to identify the underlying genetic pathways that regulate EV productivity to inform rational host cell line engineering and media development approaches. The screens identified multiple metabolic pathways of potential interest; one of which was validated and shown to be a ready implementable, cost-effective strategy to increase EV titers. We show that both EV volumetric and specific productivity from HEK293 and CHO-S were increased in a dose and cell line-dependent manner up to ninefold when cholesterol synthesis was inhibited by the inclusion of statins in the cell culture media. In addition, we show in response to statin treatment, elevation of EV markers in mesenchymal stem cell (MSC) cell culture media suggesting this approach can also be applicable to MSC EVs. Furthermore, we show that the EVs produced from statin-treated HEK293 cultures are effectively loaded by both endogenous and exogenous loading methods and have equivalent in vitro or in vivo potency relative to EVs from untreated cultures.


Assuntos
Vesículas Extracelulares , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Células HEK293 , Vesículas Extracelulares/metabolismo , Técnicas de Cultura de Células , Colesterol/metabolismo
9.
Int J Mol Sci ; 24(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36982489

RESUMO

Epsilon toxin (ETX), produced by type B and D strains of Clostridium perfringens, can cause fatal enterotoxaemia in ruminant animals, particularly sheep, cattle, and goats. Previous studies show that the cytotoxicity of ETX is dependent on the integrity of lipid rafts, the maintenance of which is ensured by cholesterol. Zaragozic acid (ZA) is a statin drug that reduces the synthesis of squalene, which is responsible for cholesterol synthesis. In this study, ZA significantly reduced the toxicity of ETX in Madin-Darby canine kidney (MDCK) cells. We show that ZA does not affect the binding of ETX to MDCK cells, but propidium iodide staining (PI) and Western blotting confirmed that ZA significantly disrupts the ability of ETX to form pores or oligomers in MDCK cells. Additionally, ZA decreased the phosphatidylserine exposure on the plasma membrane and increased the Ca2+ influx of the cells. Results of density gradient centrifugation suggest that ZA decreased the number of lipid rafts in MDCK membranes, which probably contributed to the attenuation of pore-formation. Moreover, ZA protected mice against ETX in vivo. All mice pre-treated with ZA for 48 h before exposure to an absolute lethal dose of ETX (6400 ng/kg) survived. In summary, these findings provide an innovative method to prevent ETX intoxication. Considering many pore-forming toxins require lipid rafts, we tested and found ZA also inhibited the toxicity of other toxins such as Clostridium perfringens Net B and ß-toxin (CPB) and Staphylococcus aureus α-hemolysin (Hla). We expect ZA can thus be developed as a broad-spectrum medicine for the treatment of multiple toxins. In addition, other statins, such as lovastatin (LO), also reduced the toxicity of ETX. These findings indicate that statin medicines are potential candidates for preventing and treating multiple toxin-induced diseases.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Animais , Cães , Camundongos , Ovinos , Bovinos , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Células Madin Darby de Rim Canino , Membrana Celular/metabolismo , Clostridium perfringens/metabolismo
10.
Curr Rheumatol Rev ; 19(3): 270-280, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36200244

RESUMO

BACKGROUND: Statins are used to lower serum cholesterol. Recent preclinical and clinical research focuses on articular cartilage regeneration aspects of statin. This review summarizes the effects of statins on knee osteoarthritis (OA). METHODS: Published preclinical and clinical literature till November 2021 were searched in PubMed and PubMed Central databases. Articles not written in English, not relevant for the review, and unpublished evidence were excluded. Finally, 27 papers were reviewed and presented in the study. RESULTS: A total of 27 articles have been included-13 clinical and 14 preclinical studies. Preclinical studies showed statin-induced chondroprotective effects; these included in vitro studies on human or animal-derived degenerated articular cartilage as well as OA animal models. Chondroprotective effects of statins are thought to mediate by inhibiting the Wnt/ß-catenin signaling pathway, preventing synovial inflammation, and inhibiting catabolic-stress-induced aging of cartilage. Preclinical study outcomes were based on biochemical, macroscopic, and microscopic (histology) assessments and seemed promising in cartilage regeneration. In the 13 clinical studies, the effect of statins on human OA is inconclusive: some showing improvement of OA symptoms, and others depict signs of aggravation and radiological progression. No randomized controlled trial (RCT) has tested the efficacy of intra-articular statins in clinical knee OA, and it seems feasible to avoid oral statinassociated severe adverse effects. CONCLUSION: There are no arguments to recommend oral statins in clinical OA-knee. An RCT testing the efficacy of oral statins in patients with OA knee was never done and still seems justified, as well as a prospective phase-II clinical trial for intra-articular statins in different types of OA.


Assuntos
Cartilagem Articular , Inibidores de Hidroximetilglutaril-CoA Redutases , Osteoartrite do Joelho , Animais , Humanos , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/patologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Articulação do Joelho/patologia , Inflamação/patologia
11.
Am J Physiol Regul Integr Comp Physiol ; 324(3): R281-R292, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36572553

RESUMO

The regulation of cholesterol metabolism in fish is still unclear. Statins play important roles in promoting cholesterol metabolism development in mammals. However, studies on the role of statins in cholesterol metabolism in fish are currently limited. The present study evaluated the effects of statins on cholesterol metabolism in fish. Nile tilapia (Oreochromis niloticus) were fed on control diets supplemented with three atorvastatin levels (0, 12, and 24 mg/kg diet, ATV0, ATV12, and ATV24, respectively) for 4 wk. Intriguingly, the results showed that both atorvastatin treatments increased hepatic cholesterol and triglyceride contents mainly through inhibiting bile acid synthesis and efflux, and compensatorily enhancing cholesterol synthesis in fish liver (P < 0.05). Moreover, atorvastatin treatment significantly inhibited hepatic very-low-density lipoprotein (VLDL) assembly and thus decreased serum VLDL content (P < 0.05). However, fish treated with atorvastatin significantly reduced cholesterol and triglycerides contents in adipose tissue (P < 0.05). Further molecular analysis showed that atorvastatin treatment promoted cholesterol synthesis and lipogenesis pathways, but inhibited lipid catabolism and low-density lipoprotein (LDL) uptake in the adipose tissue of fish (P < 0.05). In general, atorvastatin induced the remodeling of lipid distribution between liver and adipose tissues through blocking VLDL efflux from the liver to adipose tissue of fish. Our results provide a novel regulatory pattern of cholesterol metabolism response caused by atorvastatin in fish, which is distinct from mammals: cholesterol inhibition by atorvastatin activates hepatic cholesterol synthesis and inhibits its efflux to maintain cholesterol homeostasis, consequently reduces cholesterol storage in fish adipose tissue.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Animais , Atorvastatina/farmacologia , Atorvastatina/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Lipoproteínas/metabolismo , Lipoproteínas/farmacologia , Colesterol , Fígado/metabolismo , Triglicerídeos , Lipoproteínas VLDL , Tecido Adiposo/metabolismo , Metabolismo dos Lipídeos , Mamíferos/metabolismo
12.
Mol Omics ; 19(1): 48-59, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36377691

RESUMO

Toll-like receptor 4 (TLR4), a pattern recognition receptor, is activated by lipopolysaccharides (LPS) and induces the MyD88 pathway, which subsequently produces pro-inflammatory cytokines through activation of transcriptional nuclear factor (NF)-κB. Statins have been widely prescribed to reduce cholesterol synthesis for patients with cardiovascular disease. Statins may have pleiotropic effects, which include anti- and pro-inflammatory effects on cells. The molecular mechanism of the sequential influence of LPS and statin on the innate immune system remains unknown. We employed affinity purification-spacer-arm controlled cross-linking (AP-SPACC) MS-based proteomics analysis to identify the LPS- and statin-LPS-responsive proteins and their networks. LPS-stimulated RAW 264.7 macrophage cells singly and combined with the drug statin used in this study. Two chemical cross-linkers with different spacer chain lengths were utilized to stabilize the weak and transient interactors. Proteomic analysis identified 1631 differentially expressed proteins. We identified 151 immune-response proteins through functional enrichment analysis and visualized their interaction networks. Selected candidate protein-coding genes were validated, specifically squamous cell carcinoma antigens recognized by T cells 3, sphingosine-1-phosphate lyase 1, Ras-related protein Rab-35, and tumor protein D52 protein-coding genes through transcript-level expression analysis. The expressions of those genes were significantly increased upon statin treatment and decreased in LPS-stimulated macrophage cells. Therefore, we presumed that the expression changes of genes occurred due to immune response during activation of inflammation. These results highlight the immune-responsive proteins network, providing a new platform for novel investigations and discovering future therapeutic targets for inflammatory diseases.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Transdução de Sinais , Proteômica , Macrófagos/metabolismo , NF-kappa B/metabolismo , NF-kappa B/farmacologia
13.
PLoS Negl Trop Dis ; 16(12): e0010989, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36490300

RESUMO

As a leading cause of death in children under 5 years old, secretory diarrheas including cholera are characterized by excessive intestinal fluid secretion driven by enterotoxin-induced cAMP-dependent intestinal chloride transport. This study aimed to identify fungal bioactive metabolites possessing anti-secretory effects against cAMP-dependent chloride secretion in intestinal epithelial cells. Using electrophysiological analyses in human intestinal epithelial (T84) cells, five fungus-derived statin derivatives including α,ß-dehydrolovastatin (DHLV), α,ß-dehydrodihydromonacolin K, lovastatin, mevastatin and simvastatin were found to inhibit the cAMP-dependent chloride secretion with IC50 values of 1.8, 8.9, 11.9, 11.4 and 5 µM, respectively. Being the most potent statin derivatives, DHLV was evaluated for its pharmacological properties including cellular toxicity, mechanism of action, target specificity and in vivo efficacy. DHLV at concentrations up to 20 µM did not affect cell viability and barrier integrity of T84 cells. Electrophysiological analyses indicated that DHLV inhibited cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent apical chloride channel, via mechanisms not involving alteration of intracellular cAMP levels or its negative regulators including AMP-activated protein kinases and protein phosphatases. DHLV had no effect on Na+-K+ ATPase activities but inhibited Ca2+-dependent chloride secretion without affecting intracellular Ca2+ levels. Importantly, intraperitoneal (2 mg/kg) and intraluminal (20 µM) injections of DHLV reduced cholera toxin-induced intestinal fluid secretion in mice by 59% and 65%, respectively without affecting baseline intestinal fluid transport. This study identifies natural statin derivatives as novel natural product-derived CFTR inhibitors, which may be beneficial in the treatment of enterotoxin-induced secretory diarrheas including cholera.


Assuntos
Cólera , Inibidores de Hidroximetilglutaril-CoA Redutases , Criança , Camundongos , Humanos , Animais , Pré-Escolar , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Cólera/tratamento farmacológico , Cólera/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Mucosa Intestinal , Cloretos/metabolismo , Cálcio/metabolismo , Diarreia/tratamento farmacológico , Enterotoxinas/metabolismo
14.
Int J Mol Sci ; 23(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36293254

RESUMO

Nanotechnology has been developed to deliver cargos effectively to the vascular system. Nanomedicine is a novel and effective approach for targeted vascular disease treatment including atherosclerosis, coronary artery disease, strokes, peripheral arterial disease, and cancer. It has been well known for some time that vascular disease patients have a higher cancer risk than the general population. During atherogenesis, the endothelial cells are activated to increase the expression of adhesion molecules such as Intercellular Adhesion Molecule 1 (ICAM-1), Vascular cell adhesion protein 1 (VCAM-1), E-selectin, and P-selectin. This biological activation of endothelial cells gives a targetability clue for nanoparticle strategies. Nanoparticle formation has a passive targeting pathway due to the increased adhesion molecule expression on the cell surface as well as increased cell activation. In addition, the VCAM-1-targeting peptide has been widely used to target the inflamed endothelial cells. Biomimetic nanoparticles using platelet and leukocyte membrane fragment strategies have been promising techniques for targeted vascular disease treatment. Cyclodextrin, a natural oligosaccharide with a hydrophobic cavity, increase the solubility of cholesterol crystals at the atherosclerotic plaque site and has been used to deliver the hydrophobic drug statin as a therapeutic in a targeted manner. In summary, nanoparticles decorated with various targeting molecules will be an effective and promising strategy for targeted vascular disease treatment.


Assuntos
Ciclodextrinas , Inibidores de Hidroximetilglutaril-CoA Redutases , Doenças Vasculares , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Selectina E/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Selectina-P/metabolismo , Células Endoteliais/metabolismo , Nanomedicina , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Moléculas de Adesão Celular/metabolismo , Doenças Vasculares/metabolismo , Oligossacarídeos/metabolismo , Ciclodextrinas/metabolismo , Colesterol/metabolismo , Endotélio Vascular/metabolismo
15.
Analyst ; 147(23): 5372-5385, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36285592

RESUMO

Cardiovascular diseases are still among the leading causes of mortality and morbidity worldwide. The build-up of fatty plaques in the arteries, leading to atherosclerosis, is the most common cause of cardiovascular diseases. The central player in atherosclerotic plaque formation is the foam cell. Foam cells are formed when monocytes infiltrate from the blood stream into the sub-endothelial space, differentiating into macrophages. With the subsequent uptake and storage of lipoprotein, especially low-density lipoprotein (LDL), they change their phenotype to lipid laden cells. Lowering circulating LDL levels, or initiating cholesterol efflux/reverse cholesterol transport in foam cells, is one of the current clinical therapies. Prescription of the pleiotropic drugs, statins, is the most successful therapy for the treatment and prevention of atherosclerosis. In this study, we used a foam cell model from the macrophage cell line, RAW 246.7, and applied the label-free Fourier Transform Infrared Spectroscopy (FTIR) method, i.e. synchrotron-based microFTIR spectroscopy, to study the lipid efflux process initiated by statins in a dose and time dependent manner. We used glass coverslips as substrates for IR analysis. The optical images (visible and fluorescent light) clearly identify the localization and lipid distribution within the foam cells, and the associated changes before and after culturing them with atorvastatin at concentrations of 0.6, 6 and 60 µg mL-1, for a culture duration between 24 to 72 hours. MicroFTIR spectroscopic spectra uniquely displayed the reduction of lipid content, with higher lipid efflux observed at higher doses of, and longer incubation time with, atorvastatin. Principal Component Analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE) analysis demonstrated defined cluster separation at both lipid (3000-2800 cm-1) and fingerprint (1800-1350 cm-1) regions, with more profound discrimination for the atorvastatin dose treatment than time treatment. The data indicate that combining synchrotron-based microFTIR spectroscopy and using glass substrates for foam cells can offer an alternative tool in atherosclerosis investigation at a molecular level, and through cell morphology.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Inibidores de Hidroximetilglutaril-CoA Redutases , Placa Aterosclerótica , Humanos , Células Espumosas/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Atorvastatina/farmacologia , Atorvastatina/metabolismo , Atorvastatina/uso terapêutico , Colesterol/metabolismo , Aterosclerose/tratamento farmacológico
16.
Iran J Immunol ; 19(3): 255-262, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36190380

RESUMO

BACKGROUND: Natural killer (NK) cells are dichotomously involved in chronic hepatitis B (CHB) infection as principal members of innate immunity. An effective treatment should enhance the antiviral potentials of NK cells and not their immunomodulatory roles. TIM-3 (T-cell immunoglobulin and mucin-containing domain) is a molecule with an essential role in controlling immune tolerance. TIM-3 demonstrated the highest expression among NK cells of patients with chronic liver disorders. Statins have been reported to attenuate the levels of TIM-3 on NK cells. OBJECTIVES: To investigate the frequencies of NK cells, NKT cells, and TIM-3+ population in patients with CHB upon rosuvastatin (RSV) intervention. METHODS: Thirty confirmed patients with CHB were randomly assigned into two groups of 15 (receiving 20 mg of RSV or placebo per day) for 12 weeks. We evaluated the percentages of TIM-3+ cells by staining the peripheral blood mononuclear cells (PBMCs) with CD3, CD16, and CD56 markers using flow cytometry. RESULTS: Our findings indicated that RSV administration could increase CD3- CD56+ NK cells (P>0.05) and CD3+ CD16+ CD56+ NKT cells (P<0.05). RSV intervention could reduce the percentages of TIM-3+ cells among NK cells (P<0.01) and NKT cells (P> 0.05) of patients with CHB compared with the placebo group. CONCLUSIONS: The increased population of NK and NKT cells and the effective reduction of TIM-3+ cells among patients with CHB delineated that rosuvastatin could be proposed as an appropriate modulator of innate immune response (regarding NK and NKT cells) in favor of enhancing their antiviral activities.


Assuntos
Hepatite B Crônica , Inibidores de Hidroximetilglutaril-CoA Redutases , Células T Matadoras Naturais , Antivirais/uso terapêutico , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Imunoglobulinas , Células Matadoras Naturais , Mucinas/metabolismo , Rosuvastatina Cálcica/metabolismo , Rosuvastatina Cálcica/uso terapêutico
17.
J Cardiovasc Pharmacol ; 80(5): 732-738, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35856902

RESUMO

ABSTRACT: Doxorubicin is a widely used anticancer drug in clinical practice, and its myocardial toxicity is the main concern in oncotherapy. Statins are commonly used as hypolipidemic drugs. Recent studies have also focused on the effects of statins on autophagy. Autophagy is a process in which cells consume their own cytoplasm or organelles after stimulation and finally degrade the phagosome in the lysosome. Transcription factor EB (TFEB) is the main factor regulating lysosomal gene transcription and function. We found that atorvastatin (ATO) increased TFEB protein levels and the ratio of lysosomal-associated membrane protein 2/LC3B in the myocardial tissue of mice with doxorubicin-induced cardiomyopathy (DIC). Therefore, we speculated that ATO may improve cardiac function in mice with DIC by increasing the expression of TFEB to enhance lysosomal function and autophagy. This study explored the role of TFEB in DIC and the possible mechanism of ATO in improving DIC and used statins to prevent and treat DIC; various dilated cardiomyopathy and heart failure diseases provide more experimental evidence. All relevant data are within the article and its supporting information files.


Assuntos
Cardiomiopatias , Inibidores de Hidroximetilglutaril-CoA Redutases , Camundongos , Animais , Atorvastatina/farmacologia , Atorvastatina/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Lisossomos/genética , Lisossomos/metabolismo , Autofagia , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/prevenção & controle , Cardiomiopatias/metabolismo , Doxorrubicina
18.
Drug Metab Dispos ; 50(7): 942-956, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35504656

RESUMO

Our laboratory has shown that activation of transforming growth factor- ß (TGF- ß )/activin receptor-like kinase 1 (ALK1) signaling can increase protein expression and transport activity of organic anion transporting polypeptide 1a4 (Oatp1a4) at the blood-brain barrier (BBB). These results are relevant to treatment of ischemic stroke because Oatp transport substrates such as 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (i.e., statins) improve functional neurologic outcomes in patients. Advancement of our work requires determination if TGF- ß /ALK1 signaling alters Oatp1a4 functional expression differently across brain regions and if such disparities affect central nervous system (CNS) statin disposition. Therefore, we studied regulation of Oatp1a4 by the TGF- ß /ALK1 pathway, in vivo, in rat brain microvessels isolated from cerebral cortex, hippocampus, and cerebellum using the ALK1 agonist bone morphogenetic protein-9 (BMP-9) and the ALK1 inhibitor 4-[6-[4-(1-piperazinyl)phenyl]pyrazolo[1,5-a]pyrimidin-3-yl]quinoline dihydrochloride 193189. We showed that Oatp1a4 protein expression and brain distribution of three currently marketed statin drugs (i.e., atorvastatin, pravastatin, and rosuvastatin) were increased in cortex relative to hippocampus and cerebellum. Additionally, BMP-9 treatment enhanced Oatp-mediated statin transport in cortical tissue but not in hippocampus or cerebellum. Although brain drug delivery is also dependent upon efflux transporters, such as P-glycoprotein and/or Breast Cancer Resistance Protein, our data showed that administration of BMP-9 did not alter the relative contribution of these transporters to CNS disposition of statins. Overall, this study provides evidence for differential regulation of Oatp1a4 by TGF- ß /ALK1 signaling across brain regions, knowledge that is critical for development of therapeutic strategies to target Oatps at the BBB for CNS drug delivery. SIGNIFICANCE STATEMENT: Organic anion transporting polypeptides (Oatps) represent transporter targets for brain drug delivery. We have shown that Oatp1a4 statin uptake is higher in cortex versus hippocampus and cerebellum. Additionally, we report that the transforming growth factor- ß /activin receptor-like kinase 1 agonist bone morphogenetic protein-9 increases Oatp1a4 functional expression, but not efflux transporters P-glycoprotein and Breast Cancer Resistance Protein, in cortical brain microvessels. Overall, this study provides critical data that will advance treatment for neurological diseases where drug development has been challenging.


Assuntos
Inibidores Enzimáticos/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases , Neoplasias , Transportadores de Ânions Orgânicos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Receptores de Ativinas/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Coenzima A/metabolismo , Fator 2 de Diferenciação de Crescimento/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Oxirredutases/metabolismo , Ratos , Fator de Crescimento Transformador beta/metabolismo , Fatores de Crescimento Transformadores/metabolismo
19.
Acta Pharmacol Sin ; 43(11): 2905-2916, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35459869

RESUMO

Anterior gradient 2 (AGR2), a protein disulfide isomerase (PDI), is a multifunctional protein under physiological and pathological conditions. In this study we investigated the roles of AGR2 in regulating cholesterol biogenesis, lipid-lowering efficiency of lovastatin as well as in protection against hypercholesterolemia/statin-induced liver injury. We showed that AGR2 knockout significantly decreased hepatic and serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) in mice with whole-body or hepatocyte-specific Agr2-null mutant, compared with the levels in their wild-type littermates fed a normal chow diet (NCD) or high-fat diet (HFD). In contrast, mice with AGR2 overexpression (Agr2/Tg) exhibited an increased cholesterol level. Mechanistic studies revealed that AGR2 affected cholesterol biogenesis via activation of AKT/sterol regulatory element-binding protein-2 (SREBP2), to some extent, in a PDI motif-dependent manner. Moreover, elevated AGR2 led to a significant decrease in the lipid-lowering efficacy of lovastatin (10 mg· kg-1· d-1, ip, for 2 weeks) in mice with hypercholesterolemia (hyperCho), which was validated by results obtained from clinical samples in statin-treated patients. We showed that lovastatin had limited effect on AGR2 expression, but AGR2 was inducible in Agr2/Tg mice fed a HFD. Further investigations demonstrated that drug-induced liver toxicity and inflammatory reactions were alleviated in hypercholesterolemic Agr2/Tg mice, suggesting the dual functions of AGR2 in lipid management and hyperCho/statin-induced liver injury. Importantly, the AGR2-reduced lipid-lowering efficacy of lovastatin was attenuated, at least partially, by co-administration of a sulfhydryl-reactive compound allicin (20 mg· kg-1· d-1, ip, for 2 weeks). These results demonstrate a novel role of AGR2 in cholesterol metabolism, drug resistance and liver protection, suggesting AGR2 as a potential predictor for selection of lipid-lowering drugs in clinic.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Inibidores de Hidroximetilglutaril-CoA Redutases , Hipercolesterolemia , Camundongos , Animais , Lovastatina/farmacologia , Lovastatina/uso terapêutico , Lovastatina/metabolismo , Hipercolesterolemia/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , LDL-Colesterol , Fígado/metabolismo
20.
Drug Metab Dispos ; 50(9): 1132-1141, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35351775

RESUMO

Plasma proteins or human serum albumin (HSA) have been reported to increase the in vitro intrinsic uptake clearance (CLint,uptake) of drugs by hepatocytes or organic anion transporting polypeptide (OATP)-transfected cell lines. This so-called protein-mediated uptake effect (PMUE) is thought to be due to an interaction between the drug-protein complex and the cell membrane causing an increase in the unbound drug concentration at the cell surface, resulting in an increase in the apparent CLint,uptake of the drug. To determine if the PMUE on OATP-mediated drug uptake is an artifact or a real phenomenon, we determined the effect of 1%, 2%, and 5% HSA on OATP1B1-mediated [human embryonic kidney (HEK)293 transfected cells] and passive CLint,uptake (mock HEK293 cells) on a cocktail of five statins. In addition, we determined the non-specific binding (NSB) of the statin-HSA complex to the cells/labware. The increase in uptake of atorvastatin, fluvastatin, and rosuvastatin in the presence of HSA was completely explained by the extent of NSB of the statin-HSA complex, indicating that the PMUE for these statins is an artifact. In contrast, this was not the case for OATP1B1-mediated uptake of pitavastatin and passive uptake of cerivastatin, suggesting that the PMUE is a real phenomenon for these drugs. Additionally, the PMUE on OATP1B1-mediated uptake of pitavastatin was confirmed by a decrease in its unbound IC50 in the presence of 5% HSA versus Hank's balanced salt solution buffer (HBSS). These data question the utility of routinely including plasma proteins or HSA in uptake experiments and the previous findings on PMUE on OATP-mediated drug uptake. SIGNIFICANCE STATEMENT: Here we report, for the first time, that the protein-mediated uptake effect (PMUE) on organic anion transporting polypeptide (OATP)-transported drugs could be an artifact of the non-specific binding (NSB) of the drug-albumin complex to cells/labware. Future experiments on PMUE must take into consideration such NSB. In addition, mechanisms other than PMUE need to be explored to explain the underprediction of in vivo OATP-mediated hepatic drug clearance from in vitro uptake studies.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Transportadores de Ânions Orgânicos , Artefatos , Proteínas Sanguíneas/metabolismo , Interações Medicamentosas , Células HEK293 , Hepatócitos/metabolismo , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Fígado/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Peptídeos/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...